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ABSTRACT 
The main objective of this paper is to study the viscosity technical to solve stochastic partial differential 

equations(SPDEs) and to discuss the uniqueness of the stochastic viscosity solution and also to study a comparison 

theorem between a stochastic viscosity solution and an 𝜔-wise stochastic viscosity solution. 
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I. INTRODUCTION 

 
A stochastic differential equation (SDE for briefly) is a differential equation in which one or more of the terms is 
a stochastic process, resulting in a solution which is itself a stochastic process. The earliest work on SDEs was done 

to describe Brownian motion in Einstein's famous paper, and by the physicist Marian Smoluchowski The earlier 

works done on SDEs related to Brownian motion is credited to Bachelier (1900) in his thesis 'Theory of Speculation. 

The stochastic differential equations with it is both ordinary and partial types are used to model diverse phenomena. 

The existence and uniqueness of solution for SDEs found in Øksendal see [1]. 

 

Stochastic Partial Differential Equation (SPDEs)  are essentially partial differential equation that have random 

forcing term and coefficients. The most classical SPDEs is given by stochastic heat equation can formally be written 

as ∂tu = ∆u + ℱ where ℱ t, x  is random noise and ∆ is the laplacian an u t, x , t ≥ 0,   0 ≤ x ≤ L. 

 

II. VISCOSITY SOLUTION 
 

The theory of viscosity can be applied to study linear and nonlinear Partial differential equations of any order. We 

can now introduce the definition of viscosity solutions for PDEs: 

𝐹 𝑥, 𝑢,𝐷𝑢, 𝐷2𝑢 = 0,   𝑥 ∈ Ω          …………………… (1) 
 

Definition 2.1: Let Ω ⊂ ℝ𝑛  be an open set and 𝑢 continuous in Ω. 

(i) We say that 𝑢 is a viscosity of (1) at a point 𝑥0 ∈ Ω, if and only if, for any test function 𝜑 ∈ 𝐶2 Ω  such 

that 𝑢 − 𝜑 has a local maximum at 𝑥0, then 

𝐹 𝑥0 , 𝑢 𝑥0 , 𝐷𝜑 𝑥0 , 𝐷2𝜑 𝑥0  ≤ 0;          ……………………(2) 

 

(ii) We say that 𝑢 is a viscosity super solution of (6) at a point 𝑥0 ∈ Ω, if and only if, for any test function 

𝜑 ∈ 𝐶2 Ω  such that 𝑢 − 𝜑 has a local minimum at 𝑥0, then 

𝐹 𝑥0 , 𝑢 𝑥0 , 𝐷𝜑 𝑥0 , 𝐷2𝜑 𝑥0  ≥ 0;          ……………………(3) 

 

(iii) We say that 𝑢 is a viscosity solution in the open set Ω if 𝑢 is a viscosity subsolution and a viscosity 

supersolution, at any point 𝑥0 ∈ Ω.      

 

III. PROBLEM FORMULATION 
      

We continue to study the following nonlinear stochastic PDE (SPDE): 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Einstein
http://en.wikipedia.org/wiki/Annus_Mirabilis_Papers#Brownian_motion
http://en.wikipedia.org/wiki/Bachelier
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𝑑𝑢 𝑡, 𝑥 =  𝒜𝑢 𝑡, 𝑥 + 𝑓 𝑡, 𝑥, 𝑢 𝑡, 𝑥 , 𝜎∗ 𝑥 𝐷𝑢 𝑡, 𝑥   𝑑𝑡 

+ 𝑔𝑖 𝑡, 𝑥, 𝑢 𝑡, 𝑥  𝑑𝐵𝑡
𝑖

𝑑

𝑖=1

 𝑡, 𝑥 ∈  0, 𝑡 × 𝑅𝑛 , 

𝑢 0, 𝑥 = 𝑢0 𝑥 , 𝑥 ∈ 𝑅𝑛 ,                                 ……………… . . (4) 

 

Where 𝐵 =  𝐵1 , … , 𝐵𝑑   is a standard d-dimensional Brownian motion defined on some complete filtered probability 

space  Ω,ℱ, 𝑝; 𝐹 , with 𝐹 =  ℱ𝑡 𝑡≥0 being a filtration satisfying the usual hypothesis and the stochastic integral in 

the second-order differential operator 𝒜 in (4) is defined by 

𝒜 =
1

2
𝑡𝑟 𝜎 𝑥 𝜎 𝑥 ∗𝐷2 +  𝛽 𝑥 , 𝐷 ,                        ………… .… (5) 

 

 Where 𝐷 =  𝜕𝑥1
, 𝜕𝑥2

, … 𝜕𝑥𝑛  
𝑇

,𝐷2 =  𝜕𝑥𝑖𝑥𝑗
2  

𝑖,𝑗=1

𝑛

; the functions 𝜎, 𝛽 are assumed to be measurable; and 𝜎∗ .   

denotes the transpose of 𝜎 .  . To simplify notations we also denote,  

𝐹 𝜔, 𝑡, 𝑥, 𝑦, 𝑝, 𝐴 ≜
1

2
𝑡𝑟 𝜎 𝑥 𝜎 𝑥 ∗𝐴 +  𝛽 𝑥 , 𝑝 + 𝑓 𝜔, 𝑡, 𝑥, 𝑦𝜎∗ 𝑥 𝑝  

 𝜔, 𝑡, 𝑥, 𝑦, 𝑝, 𝐴 ∈ 𝛺 ×  0, 𝑇 × 𝑅𝑛 × 𝑅 × 𝑅𝑛 × 𝜑𝑛 ,         …………(6) 

 

Where 𝜑𝑛  is the space of all symmetric 𝑛 ×n-matrices. In the sequel we will refer to (4) as SPDE  𝑓, 𝑔 . 
We shall make use of the following standing assumptions: 

(i) The functions 𝜎: 𝑅𝑛 → 𝑅𝑛×𝑘  and 𝛽: 𝑅𝑛 → 𝑅 are uniformly Lipschitz continuous, with a common Lipschitz 

constant 𝐾 > 0. 

(ii) The function 𝑓: Ω ×  0, 𝑇 × 𝑅𝑛 × 𝑅 × 𝑅𝑘 ⟼ 𝑅 is a continuous random field such that for fixed 
 𝑥, 𝑦, 𝑝 , 𝑓 . , . , 𝑥, 𝑦, 𝜎∗ 𝑥 𝑝  is 𝐹𝐵-progressively measurable; and there exists some constant𝐾 > 0 such that for P-

a.e. 𝜔 ∈ 𝛺, 
 𝑓 𝜔, 𝑡, 𝑥, 0,0  ≤ 𝐾  ∀ 𝑡, 𝑥 ∈  0, 𝑇 × 𝑅, 
 𝑓 𝜔, 𝑡, 𝑥, 𝑦, 𝑧 − 𝑓 𝜔, 𝑡 ′ , 𝑥′ , 𝑦 ′ , 𝑧′  ≤ 

𝐾  𝑡 − 𝑡 ′  +  𝑥 − 𝑥′  +  𝑦 − 𝑦 ′  +  𝑧 − 𝑧′   ; 
∀ 𝑡, 𝑥, 𝑦, 𝑧 ,  𝑡 ′ , 𝑥′ , 𝑦 ′ , 𝑧′  ∈  0, 𝑇 × 𝑅𝑛 × 𝑅 × 𝑅𝑘   …… . (7) 

(iii) The function 𝑢𝑜 : 𝑅𝑛 ⟼ 𝑅 is continuous and, such that for some constants 𝐾, 𝑝 > 0, 
 𝑢0 𝑥  ≤ 𝐾 1 +  𝑥 𝑝 ,    𝑥 ∈ 𝑅𝑛           ……………………… . (8) 

(iv) The function 𝑔 ∈ 𝐶𝑏
0,2,3  0, 𝑇 × 𝑅𝑛 × 𝑅;𝑅𝑑 . 

Recall that in order to obtain the so-called uniform stochastic boundedness of the stochastic viscosity solution, we 

need to strengthen Assumption (iv) to the following: 

(v) The function 𝑔 satisfies (iv); and for 𝜀 > 0, there exists a function 𝐺𝜀 ∈ 𝐶1,2,2,2  0, 𝑇 × 𝑅𝑑 × 𝑅𝑛 × 𝑅  
𝜕𝐺𝜀

𝜕𝑡
 𝑡, 𝑤, 𝑥, 𝑦 = 𝜀; 

𝜕𝐺𝜀

𝜕𝑤𝑖
= 𝑔𝑖 𝑡, 𝑥, 𝐺𝜀 𝑡, 𝑤, 𝑥, 𝑦  ,   𝑖 = 1, … , 𝑑; 

𝐺𝜀 0,0, 𝑥, 𝑦 = 𝑦                              …………………………… . . (9) 

 

We remark that when 𝑔 is independent of 𝑡and 𝑑 = 1, then (v) is trivially satisfied, since one can always first solve 

the ODE (with parameter 𝑥): 
𝑑𝐺

𝑑𝑤
= 𝑔 𝑥, 𝐺 ,        𝐺 0 = 𝑦, 

And then set 𝐺𝜀 𝑡,𝑤, 𝑥, 𝑦 = 𝐺 𝑤, 𝑥, 𝑦 + 𝜀𝑡. 
 

To define a stochastic viscosity solution, we first consider the following SDE in the  sense: for each  𝑥, 𝑦 ∈ 𝑅𝑛 ×
𝑅, 

𝜂 𝑡, 𝑥, 𝑦 = 𝑦 +   𝑔𝑖 𝑠, 𝑥, 𝜂 𝑠, 𝑥, 𝑦  

𝑡

0

𝑑

𝑖=1

𝑑𝐵𝑠
𝑖 
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≜ 𝑦 +   𝑔 𝑠, 𝑥, 𝜂 𝑠, 𝑥, 𝑦   

𝑡

0

,   𝑡 ≥ 0,                       ………… . . (10) 

 

or equivalently, an 𝐼𝑡𝑜  SDE (with parameter) 

𝜂 𝑡, 𝑥, 𝑦 = 𝑦 +
1

2
  𝑔,𝐷𝑦𝑔  𝑠, 𝑥, 𝜂 𝑠, 𝑥, 𝑦  𝑑𝑠

𝑡

0

 

+  𝑔 𝑠, 𝑥, 𝜂 𝑠, 𝑥, 𝑦  𝑑𝐵𝑠 

𝑡

0

                                  ………… . . … (11) 

 

Denote the (unique) solution of (10) or (11) by 𝜂 𝑡, 𝑥, 𝑦 ,  𝑡, 𝑥, 𝑦 ∈  𝑜, 𝑇 × 𝑅𝑛 × 𝑅. From the theory of SDEs we 

know that, as a stochastic flow, 𝜂 ∈ 𝐶 𝐹𝐵 ,  𝑜, 𝑇 × 𝑅𝑛 × 𝑅 . Since under (iv) the mapping 𝑦 ⟼ 𝜂 𝑡, 𝑥, 𝑦, 𝜔  defines 

a diffeomorphism for all  𝑡, 𝑥 , a.s., we can denote the y-inverse of 𝜂 𝑡, 𝑥, 𝑦  by 𝜺 𝑡, 𝑥, 𝑦 , and show that 𝜺 𝑡, 𝑥, 𝑦  is 
the solution to the following SPDE: 

𝜺 𝑡, 𝑥, 𝑦 = 𝑦 −  𝐷𝑦𝜺 𝑡, 𝑥, 𝑦 𝑔 𝑠, 𝑥, 𝑦 , 𝑑𝐵𝑠 

𝑡

0

 

∀ 𝑡, 𝑥, 𝑦 , 𝑎. 𝑠.                                                    …………………(12) 

 

Definition 3.1 A random field 𝑢 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × 𝑅𝑛   is called a stochastic viscosity subsolution (resp. 

supersolution) of SPDE  𝑓, 𝑔 , if 𝑢 0, 𝑡 ≤  𝑟𝑒𝑠𝑝.  𝑢0 𝑥 ∀𝑥 ∈ 𝑅𝑛 ; and if for any 𝜏 ∈ ℳ0
𝐵 ,  ∈ 𝐿0 ℱ𝜏

𝐵 ; 𝑅𝑛  , and any 

random field 𝜑 ∈ 𝐶1,2 ℱ𝜏
𝐵 ,  𝑜, 𝑇 × 𝑅𝑛   satisfying. 

 

𝑢 𝑡, 𝑥 − 𝜂 𝑡, 𝑥, 𝜑 𝑡, 𝑥  ≤  𝑟𝑒𝑠. ≥ 0 = 𝑢 𝜏,  − 𝜂 𝜏, , 𝜑 𝜏,   , 

Foe all  𝑡, 𝑥  in a neighborhood of  𝜏,  , a.e. on the set  0 < 𝜏 < 𝑇 , it holds that  

𝒜𝜓 𝜏,  + 𝑓 𝜏, , 𝜓 𝜏,  , 𝜎∗  𝐷𝜓 𝜏,   ≥  𝑟𝑒𝑠𝑝. ≤ 𝐷𝑦𝜂 𝜏, , 𝜑 𝜏,  𝐷𝑡𝜑 𝜏,   ,  

a.e. on  0 < 𝜏 < 𝑇 , where 𝜓 𝑡, 𝑥 ≜ 𝜂 𝑡, 𝑥, 𝜑 𝑡, 𝑥            ………… . (13) 

 

A random field 𝑢 ∈ C FB ,  0, T × Rn  is called a stochastic viscosity solution of SPDE 𝑓, 𝑔 , if it is both a 
stochastic viscosity subsolution and a supersolution. 
 

In the special case when g = 0, one can view SPDE  f, 0  as a PDE with random coefficients. Therefore, for each 

ω ∈ Ω one can define the viscosity solution to SPDE  f, 0  in the deterministic sense. Taking the 𝜔-measurability 

into account we have the following definition which is important for the study of uniqueness. 

 

Definition 3.2: A random field 𝑢 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × 𝑅𝑛   is called an 𝜔-wise viscosity (sub, super) solution if for a.e. 

𝜔 ∈ 𝛺, 𝑢 𝜔, . , .   is a (deterministic) viscosity (sub, super) solution of the SPDE  f, 0 . 
 

Definition 3.3: A random field 𝑢 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × 𝑅𝑛   is called stochastically uniformly bounded if there exists a 

positive, increasing process  ∈ 𝐿0 𝐹𝐵 ,  0, 𝑇  , such that P-almost surely, it holds that  𝑢 𝑡, 𝑥  ≤ 𝑡∀ 𝑡, 𝑥 ∈
 0, 𝑇 × 𝑅𝑛 . 

 

Theorem 3.4: Assume (i)-(iv). A random field 𝑢 is a stochastic viscosity sub (resp. super) solution to SPDE  𝑓, 𝑔  

if and only if 𝑣 . , .  = 𝜀 . , . , 𝑢 . , .    is a stochastic viscosity sub (resp. super) solution to SPDE  𝑓 , 0 . 
 

Consequently, 𝑢 is a stochastic viscosity of SPDE  𝑓, 𝑔  if and only if 𝑣 . , .  = 𝜀 . , . , 𝑢 . , .    is a stochastic 

viscosity solution SPDE  𝑓 , 0 . 
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Theorem 3.5: Assume (i)-(iv). Then the SPDE  𝑓, 𝑔  admits a stochastic viscosity solution 𝑢 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × 𝑅𝑛  ; 
and SPDE  𝑓 , 0 admits a stochastic viscosity solution 𝑣 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × 𝑅𝑛  . Furthermore, a pair of these solutions 

𝑢, 𝑣 can be related as  

𝑢 𝑡, 𝑥 = 𝜂 𝑡, 𝑥, 𝑣 𝑡, 𝑥  ;   𝑣 𝑡, 𝑥 = 𝜀 𝑡, 𝑥, 𝑢 𝑡, 𝑥  , 
 

Where 𝜂 and 𝜀 are the solutions to (11) and (12), respectively. 

 

Finally, if in addition (v) holds and 𝑢0 is uniformly bounded, then the random fields 𝑢 and 𝑣 are both stochastically 

uniformly bounded. 

 

The uniqueness results are contained in the following corollary. Recall that in the case of 𝑔 = 0, an 𝜔-wise viscosity 

is necessary stochastic viscosity solution. 

 

Corollary 3.6 Assume (i) – (v). Then 

i) If 𝑣1 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × ℝ𝑛   is a stochastic viscosity solution and 𝑣2 ∈ 𝐶 𝐹𝐵 ,  0, 𝑇 × ℝ𝑛   is an 𝜔-wise 

viscosity solution of (3.1), and both are uniformly stochastically bounded, then 𝑣1 𝑡, 𝑥 ≡ 𝑣2 𝑡, 𝑥  for all  𝑡, 𝑥 ∈
 0, 𝑇 × ℝ𝑛 , P-a.s. 

ii) The uniformly stochastically bounded𝜔-wise viscosity solution to (3.1) is unique. In particular, if 𝑓  is 
deterministic, then the uniformly bounded; deterministic viscosity solution of(3.1) is unique. 

iii) If in addition  𝐴4′  also holds, then the stochastic viscosity solution to SPDE  𝑓, 𝑔  is unique among 

uniformly stochastically bounded random fields in𝐶 𝐹𝐵 ,  0, 𝑇 × ℝ𝑛  . 
Proof: see in( 2 ) 

 

IV. CONCLUSION AND RESULT 
 

In this paper we introduce a de7nition of stochastic viscosity solution and we show that a stochastic PDE can be 

converted to a PDE with random coefficients and the uniqueness of the stochastic viscosity solution, where the 

relation between the stochastic viscosity solution and the 𝜔-wise, "deterministic" viscosity solution to the PDE with 

random coefficients. 
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